首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   951篇
  免费   130篇
  国内免费   434篇
测绘学   44篇
大气科学   101篇
地球物理   89篇
地质学   677篇
海洋学   474篇
天文学   1篇
综合类   56篇
自然地理   73篇
  2024年   5篇
  2023年   23篇
  2022年   34篇
  2021年   44篇
  2020年   40篇
  2019年   48篇
  2018年   40篇
  2017年   56篇
  2016年   46篇
  2015年   44篇
  2014年   66篇
  2013年   81篇
  2012年   45篇
  2011年   50篇
  2010年   62篇
  2009年   57篇
  2008年   63篇
  2007年   60篇
  2006年   63篇
  2005年   60篇
  2004年   72篇
  2003年   64篇
  2002年   53篇
  2001年   37篇
  2000年   38篇
  1999年   49篇
  1998年   45篇
  1997年   38篇
  1996年   30篇
  1995年   16篇
  1994年   26篇
  1993年   18篇
  1992年   17篇
  1991年   5篇
  1990年   1篇
  1989年   10篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
排序方式: 共有1515条查询结果,搜索用时 15 毫秒
961.
识别低效无效循环带是砂岩油藏注水开发后期研究的热点和难点。将可拓理论引入到低效无效循环带的识别研究中,从定性和定量两个角度去研究低效无效循环带形成规律、表现特征,建立可拓理论识别低效无效循环带的模型,进而通过可拓识别方法进行识别。实际资料处理识别正确率为86.5%,证明了此方法的有效性。  相似文献   
962.
利用SODA(Simple Ocean Data Assimilation)再分析资料,分析了南海北部深水海域温度及盐度的季节和年际变化特征,讨论了季节及年际变化时间尺度上黑潮通过吕宋海峡对南海北部温、盐场的影响.资料分析表明:南海北部深水海域温、盐场存在明显的季节及年际变化特征.在气候平均态下,吕宋海峡处黑潮对南海北部温、盐场的影响主要存在于119°E以东;黑潮对南海的入侵程度在冬季最大,可影响到118°E附近;在秋季最小.吕宋海峡以西的温度水平梯度在秋季最弱,而盐度水平梯度则在夏季最弱.在吕宋海峡处黑潮形变的南侧,温、盐场年际变化信号最强.通过EOF(Empirical Othorgnal Function)分析,发现南海北部深水海域盐度和温度场第一模态的最大变率均分布在吕宋海峡处黑潮形变的南部,且均具有2~5 a的年际变化周期.另外,在年际变化时间尺度上,南海北部深水海域盐度场受黑潮形变的影响较大,在黑潮流量大的年份吕宋海峡处盐度值较低,在黑潮流量小的年份吕宋海峡处盐度值较高,而温度场则和Nino3.4指数呈明显的负相关变化.  相似文献   
963.
东海黑潮热核的时空变化   总被引:2,自引:0,他引:2  
利用美国国家海洋大气管理局2007年发布的全球海域温度数据库资料和美国国家地球物理数据中心2006年发布的海底地形数据库资料,对东海黑潮热核(即高温区)的时空分布进行了分析。结果显示:从表层到250m深,东海黑潮热核的分布区域由表层的靠近中轴线附近逐渐偏向黑潮的东部边缘,分布范围由表层占黑潮流幅的30%以上缩减到250m深度的10%左右,250m以下热核的分布范围和区域再没有明显的变化;从表层到水深200m,从东海黑潮的入口到出口,热核的温度与深度呈下降的趋势,在200m以下呈上升的趋势,2月份上层下降的趋势最明显;热核在台湾东北部和30°N附近进入吐噶喇海峡处均出现明显的转弯点,随着深度的增加热核的转弯点逐渐偏向东南,在台湾东北部200m水深以上热核转弯点分布还存在明显的季节变化。  相似文献   
964.
Seasonal variations in the picoplankton community were investigated from June 2002 to March 2004 within the photic zone of Sagami Bay, Japan. The study area was mostly dominated by coastal waters during the warm period (mixed layer water temperature ≥ 18°C). During the cold period (mixed layer water temperature ≤ 18°C), the water mass was characterized by low temperature and high saline waters indicative of the North Pacific Subtropical Mode Water (NPSTMW). Occasionally, a third type of water mass characterized by high temperature and low saline properties was observed, which could be evidence of the intrusion of warm Kuroshio waters. Synechococcus was the dominant picophytoplankton (5−28 × 1011 cells m−2) followed by Prochlorococcus (1−5 × 1011 cells m−2) and picoeukaryotes during the warm period. Heterotrophic bacteria dominated the picoplankton community throughout the year, especially in the warm period. During the Kuroshio Current advection, cyanobacterial abundance was high whereas that of picoeukaryotes and heterotrophic bacteria was low. During the cold period, homogeneously distributed, lower picophytoplankton cell densities were observed. The dominance of Synechococcus in the warm period reflects the importance of high temperature, low salinity and high Photosynthetically Active Radiation (PAR) on its distribution. Cyanobacterial and heterotrophic bacterial abundance showed a positive correlation with temperature. Prochlorococcus and picoeukaryotes showed a positive correlation with nutrients. Picoeukaryotes were the major contributors to the picophytoplankton carbon biomass. The annual picophytoplankton contribution to the photosynthetic biomass was 32 ± 4%. These observations suggest that the environmental conditions, combined with the seasonal variability in the source of the water mass, determines the community structure of picoplankton, which contributes substantially to the phytoplankton biomass and can play a very important role in the food web dynamics of Sagami Bay.  相似文献   
965.
The Vulcan Sub‐basin lies immediately inboard of the incipient arc‐continent collision in the Timor Sea and comprises part of the Bonaparte Basin system, the northernmost basin on Australia's North West Shelf. Given the high level of preservation of its extensional fabric, the region can provide important analogues for the likely pre‐orogeny architecture of New Guinea, which enables a better understanding of the onset of, and response to, orogenesis. Structural restoration of regional, depth‐converted 2–D seismic lines shows that although the Late Jurassic Swan Graben is significant and contains a thick source‐rock section, the principal phase of crustal extension took place in the Triassic to Middle Jurassic. Within the Vulcan Sub‐basin, the southern Tilted Fault Block Domain records ~10% Triassic to Middle Jurassic extension, whereas <5% upper crustal extension has been measured in the northern Hourglass Domain. Similarly, while Jurassic extension in the Tilted Fault Block Domain is both deep and focused, the Hourglass Domain is expressed as a broad sag to the northeast, indicating a strong underlying basement influence on compartmentalisation. The Vulcan Sub‐basin shows four principal stages of evolution: (i) regional, evenly spaced crustal faulting and subsidence in the Triassic ‐ Middle Jurassic; (ii) focused faulting in the Late Jurassic that created grabens with uplift of the shoulders; (iii) regional subsidence from the Middle Valanginian; and (iv) minor extensional and contractional reactivation in the Mio‐Pliocene. The measured brittle extension is much less than that suggested by modelling of lithospheric subsidence, which suggests long wavelength distribution of strain in the ductile lower crust, with upper crustal extension mainly focused along the continent‐ocean boundary. Along the North West Shelf and on a smaller scale within the Vulcan Sub‐basin per se, the obvious, basement‐involved, rectilinear compartments defined by prominent offsetting of both extensional fault systems and abyssal plains have important implications for the development of the New Guinea orogen. Similar scale compartments are recognised in New Guinea and display different structural styles and hydrocarbon prospectivity. The transfer zones separating the compartments are the sites of the major copper‐gold deposits in New Guinea. Using the Vulcan Sub‐basin ‐ Timor area as an analogue, it can be seen that an arc could originally collide with a promontory, such as what is now Timor, and reactivate the lineaments allowing local extension and mineralisation. In addition, interpretation of the structure of the New Guinea Fold Belt may be aided by considering the effects of compression on the geometry of the Vulcan Sub‐basin and of the similar Carnarvon Basin and adjacent extended and broken Exmouth Plateau.  相似文献   
966.
Raman microspectroscopy on carbonaceous material (RSCM) from the eastern Tauern Window indicates contrasting peak‐temperature patterns in three different fabric domains, each of which underwent a poly‐metamorphic orogenic evolution: Domain 1 in the northeastern Tauern Window preserves oceanic units (Glockner Nappe System, Matrei Zone) that attained peak temperatures (Tp) of 350–480 °C following Late Cretaceous to Palaeogene nappe stacking in an accretionary wedge. Domain 2 in the central Tauern Window experienced Tp of 500–535 °C that was attained either within an exhumed Palaeogene subduction channel or during Oligocene Barrovian‐type thermal overprinting within the Alpine collisional orogen. Domain 3 in the Eastern Tauern Subdome has a peak‐temperature pattern that resulted from Eo‐Oligocene nappe stacking of continental units derived from the distal European margin. This pattern acquired its presently concentric pattern in Miocene time due to post‐nappe doming and extensional shearing along the Katschberg Shear Zone System (KSZS). Tp values in the largest (Hochalm) dome range from 612 °C in its core to 440 °C at its rim. The maximum peak‐temperature gradient (≤70 °C km?1) occurs along the eastern margin of this dome where mylonitic shearing of the Katschberg Normal Fault (KNF) significantly thinned the Subpenninic‐ and Penninic nappe pile, including the pre‐existing peak‐temperature gradient.  相似文献   
967.
Using a mass balance algorithm, this study develops an extension module that can be embedded in the commonly used Soil and Water Assessment Tool (SWAT). This module makes it possible to assess effects of riparian wetlands on runoff and sediment yields at a watershed scale, which is very important for aquatic ecosystem management but rarely documented in the literature. In addition to delineating boundaries of a watershed and its subwatersheds, the module groups riparian wetlands within a subwatershed into an equivalent wetland for modelling purposes. Further, the module has functions to compute upland drainage area and other parameters (e.g. maximum volume) for the equivalent wetland based on digital elevation model, stream network, land use, soil and wetland distribution GIS datasets. SWAT is used to estimate and route runoff and sediment generated from upland drainage area. The lateral exchange processes between riparian wetlands and their hydraulically connected streams are simulated by the extension module. The developed module is empirically applied to the 53 km2 Upper Canagagigue Creek watershed located in Southern Ontario of Canada. The simulation results indicate that the module can make SWAT more reasonably predict flow and sediment loads at the outlet of the watershed and better represent the hydrologic processes within it. The simulation is sensitive to errors of wetland parameters and channel geometry. The approach of embedding the module into SWAT enables simulation of hydrologic processes in riparian wetlands, evaluation of wetland effects on regulating stream flow and sediment loading and assessment of various wetland restoration scenarios. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
968.
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) chlorophyll-a distribution in summer in the East China Sea during 1998–2007 was analyzed. Statistical analysis with K-means clustering technique allowed us to define the proper satellite chlorophyll-a concentration indicating the Changjiang Diluted Water (CDW). The spatial distributions of the higher satellite chlorophyll-a concentrations (>0.48 mg m−3) corresponded well with the distributions of lower salinity CDW (<30–32) every year. Interannual variation of the CDW area, indicated by the high satellite chlorophyll-a, correlated with the interannual variation of the Changjiang summer freshwater discharge. The correlation analysis indicated that the CDW spread eastward in the East China Sea with a time lag of 1 to 2 months after the discharge.  相似文献   
969.
Caledonian orogenesis in NE Greenland resulted from the collision of Laurentia and Baltica during the Ordovician–Silurian. Anatectic pelites within the metasedimentary Smallefjord Sequence record a clockwise P – T  path, the result of early crustal thickening at c . 445–440 Ma and subsequent exhumation of the high-grade metamorphic core by a combination of ductile extension and tectonic denudation. The early prograde segment of the path followed a shallow, near-isothermal trajectory and attained a metamorphic peak of c . 9.0–10.0 kbar at >790 and <850 °C. Prograde metamorphism initiated anatexis of pelites in the kyanite stability field and continued with sillimanite stable. Inclusion trails in the garnet cores are textural remnants of early deformation, which occurred either before or during prograde metamorphism. The peak metamorphic conditions are anomalously high in the context of thermal models and P – T  paths for continental collision zones. The additional heat input required to promote migmatization may have been provided by advection as lower crustal high-pressure rocks and the uppermost mantle were uplifted following lithospheric thinning at an early stage in the orogeny. The prograde path was interrupted by the development of retrograde extensional shear fabrics defined by biotite+sillimanite and associated with garnet breakdown. Field observations indicate that ductile extension was accompanied by melt extraction, transport and emplacement of intracrustal granites dated at c . 430 Ma. Regional ductile extension and exhumation probably resulted from the development of gravitational instabilities within the overthickened crust during continental collision.  相似文献   
970.
We took advantage of the close relationship between graben width and rheology of the involved materials (e.g., number, thickness and spacing of rheological layers, presence of mechanical discontinuities of different nature) and attempted to obtain information about the mechanical stratigraphy of the Ceraunius Fossae area (Northern Tharsis Region). The possible existence of detachment levels beneath the Ceraunius Fossae area were investigated using the lost-area balancing method and a topographic profile derived from Mars Orbiter Laser Altimeter (MOLA) data. Results suggest a marked difference in structural style between the western and eastern sectors of the study area, which is interpreted as a result of different mechanical stratigraphies. On the western sector the maximum depth reached by grabens is well localized within 1000 m from the topographic surface suggesting the existence of a detachment level, which we interpret as a weak horizon at the base of the Late Hesperian-Early Amazonian units. The ductile behaviour of this horizon could be favoured by the presence of volatile reservoir or ice. In the eastern sector of the profile (HNf and Hf units) the maximum depth reached by the grabens is scattered and does not support the existence of clearly defined detachment horizons suggesting that Noachian Fractured Rocks are mechanically homogeneous. A maximum depth, however, could be established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号